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Symmetry breaking, anomalous scaling, and large-scale flow generation in a convection cell
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~Received 5 October 2000; published 20 February 2001!

We consider a convection process in thin loops of different geometries. At Ra5Racr8 a first transition leading
to the generation of corner vortices is observed. At higher Ra (Ra.Racr) a coherent large-scale flow, which

persists for a very long time, sets up. The mean velocityv̄, mass fluxṁ, and the Nusselt number Nu in this

flow scale with Ra asv̄}ṁ}Ra0.45 and Nu}Ra0.9, respectively, in a wide range ofr 5(Ra2Racr)/Racr

variation. The ‘‘normal’’ scalingv̄}ARa is detected asr→0 and its range shrinks with decrease of the aspect
ratio. The time evolution of the coherent flow is well described by the Landau amplitude equation with the
appropriate selection of the Ra-dependent Landau constants. Analysis of the aspect ratio influence on the range
of validity of anomalous scaling, observed in this paper, indicates the important role played by both thermal
boundary conditions and geometry of the system.
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Thermal convection in a Be´nard cell is one of the classic
well-controlled systems, on which one can test the theor
cal understanding of various natural phenomena like fl
instabilities, transition, strong turbulence itself, and the la
governing heat and mass transfer in turbulent flows. Or
nally, studies of high Ra-number turbulence in a convect
cell were typically based on the idea that the tempera
profile averaged over horizontal planesQ(z)5T(x,y,z) dif-
fers from an almost constant value only within thin therm
boundary layers of widthdT . Then, assuming that the upp
and lower boundary layers do not ‘‘communicate,’’ one o
tains on dimensional groundsdT}Ra21/3 leading to the scal-
ing of the dimensionless heat flux~Nusselt number, Nu!
Nu}Ra1/3. The Nusselt number is defined as the ratio of
total heat flux through the cell divided by the conductive h
flux for the same conditions. The accurate experiments
Bénard convection, using low-temperature helium, co
ducted by the Libchaber group, Heslotet al. @1#, Castaing
et al. @2#, Wu @3#, Belmonteet al. @4#, showed that this rela
tion is, in fact, incorrect and instead the Nusselt numbe
high enough Ra numbers scales as Nu}Rax with x'0.285,
which is close tox52/7. Recent data by Niemelaet al. @5#,
show that x'0.3 with possible logarithmic corrections
These experiments demonstrated the appearence of this
ing simultaneously with the onset of a powerful and pers
tent coherent large-scale flow~boundary layer ‘‘wind’’! with
velocity V}Raj with j'0.48/0.49 differing from the ex-
pected free-fall exponentj50.5. The development of thi
large-scale flow in Be´nard convection as well as in annul
tanks was first reported in Howard and Krishnamurti@6#.

To investigate the source and possible generality of
anomalous scaling of the convection-generated large-s
flow we conducted a numerical study of a system first c
sidered by Welander@7# and Keller@8#. We are interested in
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the laminar large-scale flow generated as a result o
symmetry-breaking transition. This choice of system has
clear advantage: in the limitr 5(Ra2Racr)/Racr→0, the
mean velocity of the flow must obey the ‘‘normal scaling

v̄}Ar , and, as a consequence, the study of deviations f
this scaling is much easier. Our motivation was prompted
the following qualitative argument. Assume that the flow
the bulk of a Be´nard cell is simply a traditional Kolmogorov
like turbulence. We treat the flow as consisting of two par
a viscous boundary layer of widthdT and the bulk, where the
effective transport coefficients are estimated ask'n
'urmsL5(urmsL/n0)n0'no Re, wheren andk are the ef-
fective viscosity and heat diffusivity~for Prandtl number,
Pr'1), andn0 is the molecular viscosity. Thus, the bulk ca
be perceived as a very viscous~large mass! fluid. Setting, for
the sake of the argument,n→` we conclude that the prob
lem of stability of the thin boundary layer adjacent to t
walls of the convection cell can be decoupled from t
‘‘super-stable’’ chaotic flow in the bulk. Thus, the qualitativ
picture of turbulence in a Be´nard cell, presented above, com
bined with an idea that the low viscosity boundary layer
in some respect, decoupled from the bulk makes the ana
with convection in a thin loop possible. However, if th
analogy holds, it may explain the experimentally observ
anomalous scaling. We investigate numerically the dynam
of the flow in two-dimensional cells 0<x,y<L with viscos-
ity n5n0Þ` in the interval 0<uxu,uyu<d, and L2d
<uxu,uyu<L. Outside this interval, i.e., ford,x,y,L
2d, n5` meaning thatv50.

In order to test the sensitivity of results to the geometry
the system, we have performed simulations in three confi
rations, corresponding to cells of different geometry. T
first configuration is a cell ofL51 andd/L50.1, the second
is identical with the first, except for the aspect ratiod/L
50.05, whereas the third one corresponds to a circular
ometry with the same diameterL and aspect ratiod/L50.1;
in the last case, the bottom fourth of the circumference of
circle is maintained at a high nondimensional temperature
1, whereas the top fourth is kept at a low temperature of
The rest of the boundaries are considered to be adiab

s
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FIG. 1. Formation of convection rolls for the three configurations of the present paper, shown in terms of vorticity isoconto~I!
Ra510 000,~II ! Ra5100 000, and~III ! Ra530 000. Because this figure was generated by transformation of color plots to gray sca
darkest tone does not correspond to the highest value.
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Case III, which consists of a perfectly symmetric and no
singular geometry, was investigated in order to verify th
the somewhat unexpected results we found were not du
numerical errors, or due to numerical singularities~at cor-
ners!. Here, we present some of the results obtained in two
the configurations~II and III!, leaving a more detailed de
scription for a future communication. The three convect
cells and the boundary conditions used are shown in Fig
configurations I–III.

The nondimensional equations of motion are the Bou
inesq equations

]v

]t
1v•“v52“p1T1

1

Re
“

2v,

~1!
]T

]t
1v•“T5

1

Re Pr
“

2T ,

with “•v50, where the nondimensionalizing velocity sca
is U5n/L Gr1/2 and Re5Gr1/2, where Gr is the Grassho
number~here, Ra5Gr since Pr51). For given geometry, the
only nondimensional system parameter is the Rayleigh n
ber, Ra5bgDTL3/kn, where b is the thermal expansion
coefficient of the fluid,k is the heat conductivity, andn is its
kinematic viscosity.

For the time integration of Eqs.~1!, we use a fractiona
step method, in conjunction with a mixed explicit/implic
stiffly stable scheme of second order of accuracy in tim
Karniadakiset al. @9#. A consistent Neumann boundary co
dition is used for the pressure, based on the rotational f
of the viscous term, which nearly eliminates splitting erro
at solid ~Dirichlet! velocity boundaries, Tomboulideset al.
@10#. The spatial discretization of the resulting Helmho
equations is performed using two-dimensional Legen
spectral elements, Patera@11#. The resulting matrices for the
numerical solution of the two-dimensional Helmholtz equ
tions are solved using preconditioned conjugate gradien
erative solvers. The resolution can be increased by increa
either the number of elements or the order of the interpola
inside each element. In the simulations presented here
03530
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resolution was improved mainly by increasing the order
interpolants. Several resolution tests, not reported here, w
performed and a typical discretization consists of 40 e
ments with up to 15 points in each direction per element. T
collocation points are clustered near the boundaries, whe
higher resolution is necessary. In general, because of
laminar nature of the flow in the range of Ra numbers inv
tigated, the computational cost was not a limiting factor
typical simulation took a few hours on a SGI/R10000 wor
station. The resolution became limiting only in the simu
tion of very high Ra cases~over 1010 or so!.

At very low Rayleigh numbers, the fluid inside the cell
not in motion. As Ra increases over Racr8 , the first transition,
corresponding to the appearance of convection rolls, occ
Here, because of the geometry, convection rolls at scal
'd appear only at the corners of the domain, and displa
double-flip symmetry with respect to the diagonal. Isoco
tours of vorticity, consisting of counter-rotating vortices l
cated at the four corners, for Racr8 <Ra<Racr (Racr corre-
sponding to the second transition!, are shown in Figs. 1
configurations I–III.

As the Ra number increases over Racr , a symmetry-
breaking occurs, resulting in the appearance of a large-s
mean flow. This transition is a linear one and correspond
a regular bifurcation~or exchange of stability! where the
resulting flow is not time dependent~i.e., the crossing eigen

value has zero frequency!. The average mass flux (ṁ) and
nondimensionalized heat flux~Nu! for case II are plotted in
Figs. 2~a! and 2~b!, respectively, as functions of log(r ). The
value of Racr for case II was found to be Racr5114 648. As
can be observed for case II, the mass flux scales appr

mately asṁ}r 0.45, and the Nu scales as Nu}r 0.9 for r be-
tween 0.01 and approximately 100. The bottom part of Fi

2~a! and 2~b! shows ṁ multiplied by r 20.45 and (Nu21)
multiplied by r 20.9, respectively. Unlike case II, in the othe

two configurations~I and III! a scaling ofṁ}r 0.5 was de-
tected very close to Racr ~for r ,0.1) with a transition to the
r 0.45 scaling after that.
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FIG. 2. ~a! ~Top! Logarithmic plot of the large-scale average mass flux,ṁ, as function of log(r ), for case II;~bottom! r 20.45ṁ as function
of log(r ). ~b! ~Top! Logarithmic plot of the Nusselt number Nu as function of log(r ), for case II;~bottom! r 20.45(Nu"21) as function of
log(r ). The base of the logarithm is 10.
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The amplitude of the large-scale mean flow, which is g
erated after the second transition at Ra5Racr , increases with
Ra and its kinetic energy averaged over the domain was u
in the Landau amplitude equation to model this transiti
This kinetic energy,A2, is governed by the amplitude equ
tion dA2/dt5gA22aA4 ~Landau and Lifshitz@12#!. The so-
lution to this equation is given by the following expressio

A2~ t !5g@~g2aA0
2!e2g(t2t0)/A0

21a#21, ~2!
03530
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whereg and a are the so-called Landau constants, andA0
5A(t0). We found that our results can accurately be mo
eled using this equation for a wide range of Ra numbe
1022<r<102. An example of a typical comparison betwee
numerical results and Eq.~2! for this range ofr is shown in
Figs. 3~a! and 3~b!, corresponding to case III forr
50.16 (Racr for this case is equal to 34 417!. These figures
show the computed total kinetic energy of the flow, sho
with solid line, andA2(t) from Eq. ~2!, shown with dotted
line, and as can be observed from the figure the differenc
s
FIG. 3. ~a! Comparison between the numerical simulation and Eq.~2! for case III,r 50.16. ~b! Logarithmic plot of the Landau constant
g anda as functions ofr in the large-scale flow regime (Ra.Racr), for case II. The base of the logarithm is 10.
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almost negligible. It is clear from the expression forA2(t)
that at steady stateA is given by A5Ag/a. The Landau
constantsg and a were calculated from numerical simula
tion results and are shown in Figs. 3~c! and 3~d!, for case II.
Figures 3~c! and 3~d! suggest that for case IIg}r 0.9 up to r
of about 1 or so. The second exponenta was found to be
very close to 190 for allr up to 1 and to decrease monoton
cally for higher r. For the other two cases a transition w
observed in the behavior ofg at r 50.1 from ag}r 1 to a
g}r 0.9 scaling. The fact thatv̄'A}r 0.45 in a wide interval
where strong deviations of bothg anda from a simple scal-
ing @see Figs. 3~c! and 3~d!# are observed, is somewhat su
prising.

For values ofr lower than a certain level depending o
aspect ratio~10 for d/L50.1 and 100 or even higher fo
d/L50.05), the system dynamics is very well captured
the amplitude equation. For higher magnitudes ofr one can
clearly observe the appearance of other modes, which
oscillatory and, although damped at long times, do appea
the initial transients. These modes lead to instabilities
higher Ra numbers~e.g., higher than 108 for case I! and after
that the flow becomes time dependent.

In summary, in the simple system we considered he
which can mimic the experimentally observed large-sc
flow generation in Be´nard convection, first an instability oc
curs at Ra5Racr8 , leading to a symmetric steady flow pa
tern. After the symmetry-breaking, at Ra5Racr , the ob-
served v̄}ṁ}Ra0.45 and Nu}Ra0.9. The onset of this
anomalous scaling is correlated with the simultaneous m
fication of the Rayleigh number dependence of the coe
b-
, J
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cients in the Landau amplitude equation, accurately desc
ing the data in a wide range ofr. The fact that the results
obtained in this paper are so well described by the Lan
equation may be explained as follows; due to the restrict
geometry, the dynamics are well represented by a sm
number of modes even when Ra is relatively large. The m
surprising outcome in the present paper is the anoma

scalingv̄(r )}r 0.45, observed in the entire investigated inte
val 1022,r ,102 in the low aspect ratio cell~case II!. Ac-
tually, the width of the interval increased with decrease
the aspect ratio. At present, we do not understand the ori
of this effect. However, all tests, conducted in the course
this paper, indicated that the effect is due to a complica
interaction between geometry and thermal boundary co
tions, breaking all geometrical symmetries of the system
fact, when artificially changing the nature of the proble
from natural convection to a forced convection for case
by solving only for the momentum equation with a stea
forcing term in the azimuthal direction~simulating the role
of a thermal driving force!, and thus maintaining the geo
metrical symmetry of the system and still in the presence
a large-scale flow, the mass flux scaled linearly with t
amplitude of the force; no anomalous scaling was obser
for this case. We believe, this is the main difference betw
convection processes in finite and infinite cells, in which t
imposition of the thermal boundary conditions does not i
pose any symmetry breaking.

We are grateful to W. Malkus and E. Spiegel for bringin
Refs.@7,8# to our attention.
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