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We consider a convection process in thin loops of different geometries. ARRg a first transition leading
to the generation of corner vortices is observed. At higher Ra>(Ra&,) a coherent large-scale flow, which
persists for a very long time, sets up. The mean velaatynass fluxm, and the Nusselt number Nu in this
flow scale with Ra ap xmxRa&*® and NucR&?, respectively, in a wide range of=(Ra—Ra,)/Ra,
variation. The “normal” scalinng JRa is detected as—0 and its range shrinks with decrease of the aspect
ratio. The time evolution of the coherent flow is well described by the Landau amplitude equation with the
appropriate selection of the Ra-dependent Landau constants. Analysis of the aspect ratio influence on the range
of validity of anomalous scaling, observed in this paper, indicates the important role played by both thermal
boundary conditions and geometry of the system.
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Thermal convection in a Berd cell is one of the classic, the laminar large-scale flow generated as a result of a
well-controlled systems, on which one can test the theoretisymmetry-breaking transition. This choice of system has one
cal understanding of various natural phenomena like fluicclear advantage: in the limit=(Ra—Ra,)/Ra,—0, the
instabilities, transition, strong turbulence itself, and the lawamean velocity of the flow must obey the “normal scaling”

governing heat and mass transfer in turbulent flows. Origiz, o Jr, and, as a consequence, the study of deviations from
nally, studies of high Ra-number turbulence in a convectionjs scaling is much easier. Our motivation was prompted by
cell were typically based on the idea that the temperaturgne following qualitative argument. Assume that the flow in
profile averaged over horizontal plan@$z) =T(x,y,z) dif-  the bulk of a Beard cell is simply a traditional Kolmogorov-
fers from an almost constant value only within thin thermallike turbulence. We treat the flow as consisting of two parts:
boundary layers of widtléy . Then, assuming that the upper a viscous boundary layer of wid# and the bulk, where the
and lower boundary layers do not “communicate,” one ob-effective transport coefficients are estimated &s v
tains on dimensional groundi=Ra ' leading to the scal-  ~u,oL = (U;msL/ vo) Vo~ v, Re, wherev and « are the ef-
ing of the dimensionless heat flufNusselt number, Nu fective viscosity and heat diffusivityfor Prandtl number,
NusxRa®. The Nusselt number is defined as the ratio of thePr~1), andw, is the molecular viscosity. Thus, the bulk can
total heat flux through the cell divided by the conductive heabe perceived as a very viscollarge masksfluid. Setting, for
flux for the same conditions. The accurate experiments othe sake of the argument,— oo we conclude that the prob-
Benard convection, using low-temperature helium, con-lem of stability of the thin boundary layer adjacent to the
ducted by the Libchaber group, Heslet al. [1], Castaing walls of the convection cell can be decoupled from the
et al.[2], Wu [3], Belmonteet al.[4], showed that this rela- “super-stable” chaotic flow in the bulk. Thus, the qualitative
tion is, in fact, incorrect and instead the Nusselt number apicture of turbulence in a Beard cell, presented above, com-
high enough Ra numbers scales as<Ra& with x~0.285, bined with an idea that the low viscosity boundary layer is,
which is close tax=2/7. Recent data by Niemekt al. [5], in some respect, decoupled from the bulk makes the analogy
show that x~0.3 with possible logarithmic corrections. with convection in a thin loop possible. However, if this
These experiments demonstrated the appearence of this scaialogy holds, it may explain the experimentally observed
ing simultaneously with the onset of a powerful and persis-anomalous scaling. We investigate numerically the dynamics
tent coherent large-scale flofvoundary layer “wind”) with  of the flow in two-dimensional cells9x,y<L with viscos-
velocity VcRa with £~0.48/0.49 differing from the ex- ity v=wvy# in the interval G<|x|,|y|<d5, and L—§
pected free-fall exponer§=0.5. The development of this =<|x|,|ly|]<L. Outside this interval, i.e., ford<x,y<L
large-scale flow in Beard convection as well as in annular — &, v=c meaning thav=0.
tanks was first reported in Howard and Krishnam{#ii In order to test the sensitivity of results to the geometry of
To investigate the source and possible generality of théhe system, we have performed simulations in three configu-
anomalous scaling of the convection-generated large-scafations, corresponding to cells of different geometry. The
flow we conducted a numerical study of a system first confirst configuration is a cell of =1 andé/L=0.1, the second
sidered by Welanddi7] and Keller[8]. We are interested in is identical with the first, except for the aspect ratiL
=0.05, whereas the third one corresponds to a circular ge-
ometry with the same diameterand aspect ratié/L =0.1;
*Present address: CLT-F1, LVV-IET, Clausiusstrasse 33, Swis# the last case, the bottom fourth of the circumference of the
Federal Institute of TechnologfETHZ), CH-8092, Switzerland. circle is maintained at a high nondimensional temperature of
FAX: (+41-1) 632-1255. 1, whereas the top fourth is kept at a low temperature of 0.
Email address: ananias@Ivv.iet. mavt.ethz.ch The rest of the boundaries are considered to be adiabatic.
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FIG. 1. Formation of convection rolls for the three configurations of the present paper, shown in terms of vorticity isocntours:
Ra=10000,(Il) Ra=100 000, andlll) Ra=30 000. Because this figure was generated by transformation of color plots to gray scale, the
darkest tone does not correspond to the highest value.

Case lll, which consists of a perfectly symmetric and non-resolution was improved mainly by increasing the order of
singular geometry, was investigated in order to verify thatinterpolants. Several resolution tests, not reported here, were
the somewhat unexpected results we found were not due fgerformed and a typical discretization consists of 40 ele-
numerical errors, or due to numerical singulariti@s cor-  ments with up to 15 points in each direction per element. The
ners. Here, we present some of the results obtained in two o¢ollocation points are clustered near the boundaries, where a
the configurationgll and Ill), leaving a more detailed de- pigher resolution is necessary. In general, because of the
scription for a future Commu_n_ication. The three Cohve?tionlaminar nature of the flow in the range of Ra numbers inves-
ceIIs_ and t_he boundary conditions used are shown in Figs. ﬂgated, the computational cost was not a limiting factor; a
conﬂguratlon_s I—III.. . . typical simulation took a few hours on a SGI/R10000 work-
ine-ls—heenﬁgggm‘:ns'onal equations of motion are the Boussétation. The resolution became limiting only in the simula-
q€q tion of very high Ra case®ver 13° or s9.
oV 1 At very low Rayleigh numbers, the fluid inside the cell is
il Vv=-— Vp+T+R—eV2v, not in motion. As Ra increases over Rathe first transition,
corresponding to the appearance of convection rolls, occurs.
1) Here, because of the geometry, convection rolls at skale
£+V-VT= LVZT, ~ ¢ appear only at the corners of the domain, and display a
ot Re Pr double-flip symmetry with respect to the diagonal. Isocon-
_ _ _ o ] tours of vorticity, consisting of counter-rotating vortices lo-
with V-v=0, where the nondimensionalizing velocity scale .5iaq at the four corners, for R&Ra<Ra, (Ra, corre-

; — 1/2 1/2 H
IS UEV/:]‘ Gr Rar(13d R.ezGer ,1Wh§re G_r is the Grassk;]of sponding to the second transitjprare shown in Figs. 1
number(here, R&Gr since P+ 1). For given geometry, the configurations I—IIl.

only nondimensional system parameter is the Rayleigh num- As the Ra number increases over Raa symmetry-

ber, Ra= BgATL®/xv, where B is the thermal expansion breaking occurs, resulting in the appearance of a large-scale
coefficient of the fluidx is the heat conductivity, and s its 9 Y ng | € app 9
: s . mean flow. This transition is a linear one and corresponds to
kinematic viscosity. : . I
a regular bifurcation(or exchange of stabilijywhere the

For the time integration of Eq4l), we use a fractional . . ) : . .
step method, in conjunction with a mixed explicitimplicit resulting flow is not time dependefite., the crossing eigen-

stiffly stable scheme of second order of accuracy in timeyalue has zero frequencyThe average mass flum) and
Karniadakiset al.[9]. A consistent Neumann boundary con- nondimensionalized heat fluu) for case Il are plotted in
dition is used for the pressure, based on the rotational forrfrigs. 2a) and 2b), respectively, as functions of log(. The

of the viscous term, which nearly eliminates splitting errorsvalue of Ra, for case Il was found to be Ra=114 648. As

at solid (Dirichlet) velocity boundaries, Tomboulidest al.  can be observed for case Il, the mass flux scales approxi-
[10]. The spatial discretization of the resulting Helmholtz mately asmer®45 and the Nu scales as Nu®? for r be-
equations is performed using two—d!mensmpal Legendretween 0.01 and approximately 100. The bottom part of Figs.
spectral elements, Patdrhl]. The resulting matrices for the . . 045

numerical solution of the two-dimensional Helmholtz equa-2(& and 2b) s_ré%wsm multiplied by r and (Nu-1)
tions are solved using preconditioned conjugate gradient itMultiplied byr==% respectively. Unlike case I, in the other
erative solvers. The resolution can be increased by increasirigo configurations(l and Ill) a scaling ofmecr %% was de-
either the number of elements or the order of the interpolanttected very close to Ra(for r<0.1) with a transition to the
inside each element. In the simulations presented here, thé@“° scaling after that.
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FIG. 2. (a) (Top) Logarithmic plot of the large-scale average mass fiuxas function of logf), for case Il;(bottom r ~%*¥m as function
of log(r). (b) (Top) Logarithmic plot of the Nusselt number Nu as function of log(for case II;(bottom r ~%*YNu— 1) as function of
log(r). The base of the logarithm is 10.

The amplitude of the large-scale mean flow, which is genwhere y and « are the so-called Landau constants, @gd
erated after the second transition at=RRa,, , increases with =A(ty). We found that our results can accurately be mod-
Ra and its kinetic energy averaged over the domain was usegled using this equation for a wide range of Ra numbers,
in the Landau amplitude equation to model this transition10 ?<r=<10?. An example of a typical comparison between
This kinetic energyA?, is governed by the amplitude equa- numerical results and E@2) for this range ofr is shown in
tion dA%/dt= yAZ— aA* (Landau and Lifshit{12]). The so- Figs. 3a and 3b), corresponding to case Il forr

lution to this equation is given by the following expression =0.16 (Rg; for this case is equal to 34 4L 7These figures
show the computed total kinetic energy of the flow, shown

with solid line, andA?(t) from Eq. (2), shown with dotted

275\ _ A2\ a—y(t—tg) A2 -1 A ’ . .
A%(t)=y[(y—aApe YIAG+a] (2 line, and as can be observed from the figure the difference is
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FIG. 3. (a) Comparison between the numerical simulation and(Bygfor case 1ll,r =0.16. (b) Logarithmic plot of the Landau constants
v and a as functions of in the large-scale flow regime (ReRg,,), for case Il. The base of the logarithm is 10.
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almost negligible. It is clear from the expression ff(t) cients in the Landau amplitude equation, accurately describ-
that at steady statd is given by A=\/y/a. The Landau ing the data in a wide range of The fact that the results

constantsy and a were calculated from numerical simula- obtained in this paper are so well described by the Landau
tion results and are shown in FiggcBand 3d), for case Il.  equation may be explained as follows; due to the restricting
Figures 3c) and 3d) suggest that for case Hor®°up tor geometry, the dynamics are well represented by a small
of about 1 or so. The second exponenwas found to be number of modes even when Ra is relatively large. The more

very close to 190 for alt up to 1 and to decrease monotoni- surprising outcome in the present paper is the anomalous

cally for h!gherr. For tr_le other two cases a translltlon Wasscalingv_(r)ocro-“S, observed in the entire investigated inter-
observed in the behavior of atr=0.1 from ayxr- to a

0.9 . (. s - A val 10 2<r<10” in the low aspect ratio cellcase ). Ac-

yor-" scaling. The fact thab~Aor="in a wide interval  tally, the width of the interval increased with decrease of
where strong deviations of bothanda from a simple scal-  the aspect ratio. At present, we do not understand the origins
ing [see Figs. &) and 3d)] are observed, is somewhat Sur- o¢ ths effect. However, all tests, conducted in the course of
prising. . . this paper, indicated that the effect is due to a complicated

For VaIL.JeS ofr Iower_than a certain level depe_ndlng ON interaction between geometry and thermal boundary condi-
Z/SEECS (r)z;t)lo(tlhoe fgrsf’/a I;n_ocl).ia?r?igsligovgrr ex;? :;grt]frre:joi) tions, breaking all geometrical symmetries of the system. In
the am.plitu,de equ)gtion. Fgr higher magn);tudes ohpe can yfact, when art|f|C|aII¥ changing the nature 9f the problem
clegrly observe the appearance of other.modes, which Q%;rgo?\i;uéaérign% ?ctt;]%n rforié%ﬁ?’r? ggz;:gtr:o\?vizr?racieea!;
oscillatory and, although damped at long times, do appear I{orcing term in the azimuthal directiotsimulating the role

the initial transients. These modes lead to instabilities a . S
higher Ra numberée.g., higher than £0for case } and after of a thermal driving forcg and thus maintaining the geo-

that the flow becomes time dependent. metrical symmetry of the system and still in the presence of

In summary, in the simple system we considered here® large-scale flow, the mass flux scaled linearly with the
which can mimic the experimentally observed large-scal@mplitude of the force; no anomalous scaling was observed
flow generation in Beard convection, first an instability oc- for this case. We believe, this is the main difference between
curs at RaRd,,, leading to a symmetric steady flow pat- convection processes in finite and infinite cells, in which the
tern. After thersymmetry—breaking at R®a,, the ob- imposition of the thermal boundary conditions does not im-

. H r»

served pmRP4 and NuR#9 The onset of this POSE &Ny symmetry breaking.
anomalous scaling is correlated with the simultaneous modi- We are grateful to W. Malkus and E. Spiegel for bringing
fication of the Rayleigh number dependence of the coeffiRefs.[7,8] to our attention.
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